
Part I
Getting Started with Java
Programming for Android

Developers

 Visit www.dummies.com for great For Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Downloading the software
 ✓ Installing Java and Android
 ✓ Testing Android apps on your computer

Chapter 1

All about Java and Android
In This Chapter
▶ The consumer’s view of the Android ecosystem
▶ The ten-cent tour of Java and Android technologies

U
ntil the mid-2000s, the word android represented a mechanical,
humanlike creature — a root’n-toot’n officer of the law with built-in

machine guns or a hyperlogical space traveler who can do everything except
speak using contractions. And then in 2005, Google purchased Android, Inc. —
a 22-month old company creating software for mobile phones. That move
changed everything.

In 2007, a group of 34 companies formed the Open Handset Alliance. Its task
is “to accelerate innovation in mobile and offer consumers a richer, less
expensive, and better mobile experience”; its primary project is Android, an
open, free operating system based on the Linux operating system kernel.

Though HTC released the first commercially available Android phone near
the end of 2008, in the United States the public’s awareness of Android and
its potential didn’t surface until early 2010.

As I sit and write in mid-2013, Mobile Marketing Watch reports more than
50 billion downloads from the Google Play app store.1 Android developers
earned more from their apps in the first half of 2013 than in all of 2012. And
according to Forbes, Google paid approximately $900 million to Android
developers during the 12-month period starting in mid-2012.2 The pace is
accelerating.

1See www.mobilemarketingwatch.com/google-play-tops-50-
billion-app-downloads-34516/.

2See www.forbes.com/sites/tristanlouis/2013/08/10/how-
much-do-average-apps-make/.

http://www.mobilemarketingwatch.com/google-play-tops-50-billion-app-downloads-34516/
http://www.mobilemarketingwatch.com/google-play-tops-50-billion-app-downloads-34516/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/

12 Part I: Getting Started with Java Programming for Android Developers

The Consumer Perspective
A consumer considers the alternatives:

 ✓ Possibility #1: No mobile phone.

 Advantages: Inexpensive; no interruptions from callers.

 Disadvantages: No instant contact with friends and family; no calls to
services in case of emergencies.

 ✓ Possibility #2: A feature phone.

 This type of mobile phone isn’t a smartphone. Though no official rule
defines the boundary between feature phone and smartphone, a feature
phone generally has an inflexible menu of Home screen options
compared with a smartphone’s “desktop” of downloaded apps.

 Advantage: Less expensive than a smartphone.

 Disadvantages: Less versatile than a smartphone, not nearly as cool as a
smartphone, and nowhere near as much fun as a smartphone.

 ✓ Possibility #3: An iPhone.

 Advantages: Great-looking graphics.

 Disadvantages: Little or no flexibility with the single-vendor iOS
operating system; only a handful of models to choose from.

 ✓ Possibility #4: A Windows phone, a BlackBerry, or another non-
Android, non-Apple smartphone

 Advantage: Having a smartphone without having to belong to a crowd.

 Disadvantage: The possibility of owning an orphan product when the
smartphone wars come to a climax.

 ✓ Possibility #5: An Android phone

 Advantages: Using a popular, open platform with lots of industry support
and powerful market momentum; writing your own software and
installing it on your own phone (without having to post the software
on a company’s website); publishing software without having to face a
challenging approval process.

 Disadvantages: Security concerns when using an open platform; dismay
when iPhone users make fun of your phone.

For me, Android’s advantages far outweigh its possible disadvantages. And
you’re reading a paragraph from Java Programming For Android Developers
For Dummies, so you’re likely to agree with me.

13 Chapter 1: All about Java and Android

The Many Faces of Android
Version numbers can be tricky. My PC’s model number is T420s. When I
download the users’ guide, I download one guide for any laptop in the T400
series. (No guide specifically addresses the T420, let alone the T420s.) But
when I have driver problems, knowing that I have a T420s isn’t good enough.
I need drivers that are specific to my laptop’s seven-digit model number. The
moral to this story: What constitutes a “version number” depends on who’s
asking for the number.

With that in mind, you can see a history of Android versions in Figure 1-1.

A few notes on Figure 1-1 are in order:

 ✓ The platform number is of interest to the consumer and to the
company that sells the hardware.

 If you’re buying a phone with Android 4.2.2, for example, you might want
to know whether the vendor will upgrade your phone to Android 4.3.

Figure 1-1:
Versions of

Android.

14 Part I: Getting Started with Java Programming for Android Developers

 ✓ The API level (also known as the SDK version) is of interest to the
Android app developer.

 For example, the word MATCH_PARENT has a specific meaning in
Android API Levels 8 and higher. You might type MATCH_PARENT in
code that uses API Level 7. If you do (and if you expect MATCH_PARENT
to have that specific meaning), you’ll get a nasty-looking error message.

 You can read more about the Application Programming Interface (API)
in Chapter 2. For more information about the use of Android’s API levels
(SDK versions) in your code, see Chapter 4.

 ✓ The code name is of interest to the creators of Android.

 A code name refers to the work done by the creators of Android to bring
Android to the next level. Picture Google’s engineers working for months
behind closed doors on Project Cupcake, and you’ll be on the right
track.

 An Android version may have variations. For example, plain-old Android 2.2
has an established set of features. To plain-old Android 2.2 you can add the
Google APIs (thus adding Google Maps functionality) and still be using
platform 2.2. You can also add a special set of features tailored for the
Samsung Galaxy Tab.

As a developer, your job is to balance portability with feature-richness. When
you create an app, you specify a target Android version and a minimum
Android version. (You can read more about this topic in Chapter 4.) The
higher the version, the more features your app can have. But on the flip side,
the higher the version, the fewer devices that can run your app.

The Developer Perspective
Android is a multifaceted beast. When you develop for the Android platform,
you use many toolsets. This section gives you a brief rundown.

Java
James Gosling of Sun Microsystems created the Java programming language
in the mid-1990s. (Sun Microsystems has since been bought by Oracle.)
Java’s meteoric rise in use stemmed from the elegance of the language and its
well-conceived platform architecture. After a brief blaze of glory with applets
and the web, Java settled into being a solid, general-purpose language with a
special strength in servers and middleware.

15 Chapter 1: All about Java and Android

In the meantime, Java was quietly seeping into embedded processors. Sun
Microsystems was developing Java Mobile Edition (Java ME) for creating
small apps to run on mobile phones. Java became a major technology in
Blu-ray disc players. So the decision to make Java the primary development
language for Android apps is no big surprise.

 An embedded processor is a computer chip that is hidden from the user as part
of a special-purpose device. The chips in cars are now embedded processors,
and the silicon that powers the photocopier at your workplace is an embedded
processor. Pretty soon, the flower pots on your windowsill will probably have
embedded processors.

Figure 1-2 describes the development of new Java versions over time. Like
Android, each Java version has several names. The product version is an
official name that’s used for the world in general, and the developer version
is a number that identifies versions so that programmers can keep track of
them. (In casual conversation, developers use all kinds of names for the
various Java versions.) The code name is a more playful name that identifies
a version while it’s being created.

Figure 1-2:
Versions of

Java.

16 Part I: Getting Started with Java Programming for Android Developers

The asterisks in Figure 1-2 mark changes in the formulation of Java
product-version names. Back in 1996, the product versions were Java
Development Kit 1.0 and Java Development Kit 1.1. In 1998, someone decided
to christen the product Java 2 Standard Edition 1.2, which confuses everyone
to this day. At the time, anyone using the term Java Development Kit was
asked to use Software Development Kit (SDK) instead.

In 2004 the 1. business went away from the platform version name, and in
2006 Java platform names lost the 2 and the .0.

By far the most significant changes for Java developers came about in 2004.
With the release of J2SE 5.0, the overseers of Java made changes to the lan-
guage by adding new features — features such as generic types, annotations,
varargs, and the enhanced for statement.

 To see Java annotations in action, go to Chapter 10. For examples of the use of
generic types, varargs, and the enhanced for statement, see Chapter 12.

 If you compare Figures 1-1 and 1-2, you might notice that Android entered the
scene when Java was in version Java SE 6. As a result, Java is frozen at version 6
for Android developers. When you develop an Android app, you can use J2SE
5.0 or Java SE 6. You cannot use Java SE 7 with strings in its switch statements
or use Java SE 8 with its lambda expressions. But that’s okay: As an Android
developer, you probably won’t miss these features.

XML
If you find View Source among your web browser’s options one day and
decide to use it, you’ll see a bunch of HyperText Markup Language (HTML)
tags. A tag is some text, enclosed in angle brackets, that describes something
about its neighboring content.

For example, to create boldface type on a web page, a web designer writes

Look at this!

The b tags in angle brackets turn boldface type on and off.

The M in HTML stands for Markup — a general term describing any extra text
that annotates a document’s content. When you annotate a document’s
content, you embed information about the content into the document itself.
For example, in the previous line of code, the content is Look at this! The
markup (information about the content) consists of the tags and .

17 Chapter 1: All about Java and Android

The HTML standard is an outgrowth of Standard Generalized Markup
Language (SGML), an all-things-to-all-people technology for marking up
documents for use by all kinds of computers running all kinds of software
and sold by all kinds of vendors.

In the mid-1990s, a working group of the World Wide Web Consortium (W3C)
began developing the eXtensible Markup Language, commonly known as
XML. The working group’s goal was to create a subset of SGML for use in
transmitting data over the Internet. They succeeded. XML is now a well-
established standard for encoding information of all kinds.

 For an overview of XML, see the sidebar that describes it in Chapter 4.

Java is good for describing step-by-step instructions, and XML is good for
describing the way things are (or the way they should be). A Java program
says, “Do this and then do that.” In contrast, an XML document says, “It’s this
way and it’s that way.” Android uses XML for two purposes:

 ✓ To describe an app’s data

 An app’s XML documents describe the layout of the app’s screens, the
translations of the app into one or more languages, and other kinds of
data.

 ✓ To describe the app itself

 Every Android app has an AndroidManifest.xml file, an XML
document that describe features of the app. A device’s operating system
uses the AndroidManifest.xml document’s contents to manage the
running of the app.

 For example, an app’s AndroidManifest.xml file describes code that
the app makes available for use by other apps. The same file describes
the permissions that the app requests from the system. When you begin
installing a new app, Android displays these permissions and asks for
your permission to proceed with the installation. (I don’t know about
you, but I always read this list of permissions carefully. Yeah, right!)

 For more information about the AndroidManifest.xml file, see Chapter 4.

Concerning XML, I have bad news and good news. The bad news is that XML
isn’t always easy to compose. At best, writing XML code is boring. At worst,
writing XML code is downright confusing. The good news is that automated
software tools compose most the world’s XML code. As an Android
programmer, the software on your development computer composes much
of your app’s XML code. You often tweak the XML code, read part of the code
for information from its source, make minor changes, and compose brief
additions. But you hardly ever create XML documents from scratch.

18 Part I: Getting Started with Java Programming for Android Developers

Linux
An operating system is a big program that manages the overall running of a
computer or a device. Most operating systems are built in layers. An operating
system’s outer layers are usually in the user’s face. For example, both
Windows and Macintosh OS X have standard desktops. From the desktop, the
user launches programs, manages windows, and does other important things.

An operating system’s inner layers are (for the most part) invisible to the
user. While the user plays Solitaire, for example, the operating system juggles
processes, manages files, keeps an eye on security, and generally does the
kinds of things that the user shouldn’t have to micromanage.

At the deepest level of an operating system is the system’s kernel. The kernel
runs directly on the processor’s hardware and does the low-level work
required to make the processor run. In a truly layered system, higher layers
accomplish work by making calls to lower layers. So an app with a specific
hardware request sends the request (directly or indirectly) through the
kernel.

The best-known, best-loved general purpose operating systems are Windows,
Macintosh OS X (which is really Unix), and Linux. Both Windows and Mac OS X
are the properties of their respective companies. But Linux is open source.
That’s one reason why your TiVo runs Linux and why the creators of Android
based their platform on the Linux kernel.

As a developer, your most intimate contact with the Android operating
system is via the command line, also known as the Linux shell. The shell uses
commands such as cd to change to a directory, ls to list a directory’s files
and subdirectories, rm to delete files, and many others.

Google’s Android Market has plenty of free terminal apps. A terminal app’s
interface is a plain-text screen on which you type Linux shell commands. And
by using one of Android’s developer tools, the Android Debug Bridge, you
can issue shell commands to an Android device via your development
computer. If you like getting your virtual hands dirty, the Linux shell is for you.

From Development to
Execution with Java

Before Java became popular, running a computer program involved one
translation step. Someone (or something) translated the code that a developer
wrote into more cryptic code that a computer could actually execute. But
then Java came along and added an extra translation layer, and then Android
added another layer. This section describes all those layers.

19 Chapter 1: All about Java and Android

What is a compiler?
A Java program (such as an Android application program) undergoes several
translation steps between the time you write the program and the time a
processor runs the program. One of the reasons is simple: Instructions that
are convenient for processors to run are not convenient for people to write.

People can write and comprehend the code in Listing 1-1.

Listing 1-1: Java Source Code
public void checkVacancy(View view) {
 if (room.numGuests == 0) {
 label.setText(“Available”);
 } else {
 label.setText(“Taken :-(“);
 }
}

The Java code in Listing 1-1 checks for a vacancy in a hotel. You can’t run
the code in this listing without adding several additional lines. But here in
Chapter 1, those additional lines aren’t important. What’s important is that,
by staring at the code, squinting a bit, and looking past all its strange
punctuation, you can see what the code is trying to do:

If the room has no guests in it,
 then set the label’s text to “Available”.
Otherwise,
 set the label’s text to “Taken :-(“.

The content of Listing 1-1 is Java source code.

The processors in computers, phones, and other devices don’t normally
follow instructions like the instructions in Listing 1-1. That is, processors
don’t follow Java source code instructions. Instead, processors follow cryptic
instructions like the ones in Listing 1-2.

Listing 1-2: Java Bytecode
 0 aload_0
 1 getfield #19 <com/allmycode/samples/MyActivity/room
 Lcom/allmycode/samples/Room;>
 4 getfield #47 <com/allmycode/samples/Room/numGuests I>
 7 ifne 22 (+15)
10 aload_0
11 getfield #41 <com/allmycode/samples/MyActivity/label
 Landroid/widget/TextView;>
14 ldc #54 <Available>

(continued)

20 Part I: Getting Started with Java Programming for Android Developers

Listing 1-2 (continued)
16 invokevirtual #56
 <android/widget/TextView/setText
 (Ljava/lang/CharSequence;)V>
19 goto 31 (+12)
22 aload_0
23 getfield #41 <com/allmycode/samples/MyActivity/label
 Landroid/widget/TextView;>
26 ldc #60 <Taken :-(>
28 invokevirtual #56
 <android/widget/TextView/setText
 (Ljava/lang/CharSequence;)V>
31 return

The instructions in Listing 1-2 aren’t Java source code instructions. They’re
Java bytecode instructions. When you write a Java program, you write source
code instructions (refer to Listing 1-1). After writing the source code, you
run a program (that is, you apply a tool) to the source code. The program
is a compiler: It translates your source code instructions into Java bytecode
instructions. In other words, the compiler translates code that you can write
and understand (again, refer to Listing 1-1) into code that a computer can
execute (refer to Listing 1-2).

At this point, you might ask “What will I have to do to get the compiler running?”
The one-word answer to your question is “Eclipse.” All the translation steps
described in this chapter come down to using Eclipse — a piece of software
that you download for free using the instructions in Chapter 2. So when
you read in this chapter about compiling and other translation steps, don’t
become intimidated. You don’t have to repair an alternator in order to drive
a car, and you won’t have to understand how compilers work in order to use
Eclipse.

 No one (except for a few crazy developers in isolated labs in faraway places)
writes Java bytecode. You run software (a compiler) to create Java bytecode.
The only reason to look at Listing 1-2 is to understand what a hard worker
your computer is.

If compiling is a good thing, compiling twice may be even better. In 2007, Dan
Bornstein at Google created Dalvik bytecode — another way to represent
instructions for processors to follow. (To find out where some of Bornstein’s
ancestors come from, run your favorite map application and look for Dalvik
in Iceland.) Dalvik bytecode is optimized for the limited resources on a phone
or a tablet device.

Listing 1-3 contains sample Dalvik instructions.

* To see the code in Listing 1-3, I used the Dedexer program. See dedexer.
sourceforge.net.

http://www.dedexer.sourceforge.net
http://www.dedexer.sourceforge.net

21 Chapter 1: All about Java and Android

Listing 1-3: Dalvik Bytecode
.method public checkVacancy(Landroid/view/View;)V
.limit registers 4
; this: v2 (Lcom/allmycode/samples/MyActivity;)
; parameter[0] : v3 (Landroid/view/View;)
.line 30
 iget-object
 v0,v2,com/allmycode/samples/MyActivity.room
 Lcom/allmycode/samples/Room;
; v0 : Lcom/allmycode/samples/Room; , v2 :
 Lcom/allmycode/samples/MyActivity;
 iget v0,v0,com/allmycode/samples/Room.numGuests I
; v0 : single-length , v0 : single-length
 if-nez v0,l4b4
; v0 : single-length
.line 31
 iget-object
 v0,v2,com/allmycode/samples/MyActivity.label
 Landroid/widget/TextView;
; v0 : Landroid/widget/TextView; , v2 :
 Lcom/allmycode/samples/MyActivity;
 const-string v1,”Available”
; v1 : Ljava/lang/String;
 invoke-virtual
 {v0,v1},android/widget/TextView/setText
 ; setText(Ljava/lang/CharSequence;)V
; v0 : Landroid/widget/TextView; , v1 : Ljava/lang/String;
l4b2:
.line 36
 return-void
l4b4:
.line 33
 iget-object
 v0,v2,com/allmycode/samples/MyActivity.label
 Landroid/widget/TextView;
; v0 : Landroid/widget/TextView; , v2 :
 Lcom/allmycode/samples/MyActivity;
 const-string v1,”Taken :-(“
; v1 : Ljava/lang/String;
 invoke-virtual
 {v0,v1},android/widget/TextView/setText ;
 setText(Ljava/lang/CharSequence;)V
; v0 : Landroid/widget/TextView; , v1 : Ljava/lang/String;
 goto l4b2
.end method

When you create an Android app, Eclipse performs at least two compilations:

 ✓ One compilation creates Java bytecode from your Java source files.
The source filenames have the .java extension; the Java bytecode
filenames have the .class extension.

22 Part I: Getting Started with Java Programming for Android Developers

 ✓ Another compilation creates Dalvik bytecode from your Java
bytecode files. Dalvik bytecode file names have the .dex extension.

But that’s not all! In addition to its Java code, an Android app has XML files,
image files, and possibly other elements. Before you install an app on a
device, Eclipse combines all these elements into a single file — one with the
.apk extension. When you publish the app on an app store, you copy that
.apk file to the app store’s servers. Then, to install your app, a user visits
the app store and downloads your .apk file.

 To perform the compilation from source code to Java bytecode, Eclipse uses
a program named javac, also known as the Java compiler. To perform the
compilation from Java bytecode to Dalvik code, Eclipse uses a program named
dx (known affectionately as “the dx tool”). To combine all your app’s files into
one .apk file, Eclipse uses a program named apkbuilder.

What is a virtual machine?
In the section “What is a compiler?” earlier in this chapter, I make a big
fuss about phones and other devices following instructions like the ones in
Listing 1-3. As fusses go, it’s a nice fuss. But if you don’t read every fussy
word, you may be misguided. The exact wording is “. . . processors follow
cryptic instructions like the ones in Listing blah-blah-blah.” The instructions
in Listing 1-3 are a lot like instructions that a phone or tablet can execute, but
computers generally don’t execute Java bytecode instructions, and phones
don’t execute Dalvik bytecode instructions. Instead, each kind of processor
has its own set of executable instructions, and each operating system uses
the processor’s instructions in a slightly different way.

Imagine that you have two different devices: a smartphone and a tablet
computer. The devices have two different kinds of processors: The phone
has an ARM processor, and the tablet has an Intel Atom processor. (The
acronym ARM once stood for Advanced RISC Machine. These days, ARM
simply stands for ARM Holdings, a company whose employees design
processors.) On the ARM processor, the multiply instruction is 000000. On
an Intel processor, the multiply instructions are D8, DC, F6, F7, and others.
Many ARM instructions have no counterparts in the Atom architecture, and
many Atom instructions have no equivalents on an ARM processor. An ARM
processor’s instructions make no sense to your tablet’s Atom processor, and
an Atom processor’s instructions would give your phone’s ARM processor a
virtual headache.

What’s a developer to do? Does a developer provide translations of every
app into every processor’s instruction set?

23 Chapter 1: All about Java and Android

No. Virtual machines create order from all this chaos. Dalvik bytecode is
similar to the code in Listing 1-3, but Dalvik bytecode isn’t specific to a single
kind of processor or to a single operating system. Instead, a set of Dalvik
bytecode instructions runs on any processor. If you write a Java program
and compile that Java program into Dalvik bytecode, your Android phone
can run the bytecode, your Android tablet can run the bytecode, and even
your grandmother’s supercomputer can run the bytecode. (To do this, your
grandmother must install Android-x86, a special port of the Android operating
system, on her Intel-based machine.)

 You never have to write or decipher Dalvik bytecode. Writing bytecode is the
compiler’s job. Deciphering bytecode is the virtual machine’s job.

Both Java bytecode and Dalvik bytecode have virtual machines. With the
Dalvik virtual machine, you can take a bytecode file that you created for one
Android device, copy the bytecode to another Android device, and then run
the bytecode with no trouble. That’s one of the many reasons why Android
has become popular quickly. This outstanding feature, which lets you run
code on many different kinds of computers, is called portability.

Imagine that you’re the Intel representative to the United Nations Security
Council, as shown in Figure 1-3. The ARM representative is seated to
your right, and the representative from Texas Instruments is to your left.
(Naturally, you don’t get along with either of these people. You’re always
cordial to one another, but you’re never sincere. What do you expect? It’s
politics!) The distinguished representative from Dalvik is at the podium. The
Dalvik representative speaks in Dalvik bytecode, and neither you nor your
fellow ambassadors (ARM and Texas Instruments) understand a word of
Dalvik bytecode.

Figure 1-3:
An

imaginary
meeting

of the UN
Security
Council.

24 Part I: Getting Started with Java Programming for Android Developers

But each of you has an interpreter. Your interpreter translates from Dalvik
bytecode to Intel instructions as the Dalvik representative speaks. Another
interpreter translates from bytecode to “ARM-ese.” And a third interpreter
translates bytecode into “Texas Instruments-speak.”

Think of your interpreter as a virtual ambassador. The interpreter doesn’t
really represent your country, but the interpreter performs one important
task that a real ambassador performs: It listens to Dalvik bytecode on your
behalf. The interpreter does what you would do if your native language were
Dalvik bytecode. The interpreter, pretending to be the Intel ambassador,
endures the boring bytecode speech, taking in every word and processing
each one in some way or another.

You have an interpreter — a virtual ambassador. In the same way, an Intel
processor runs its own bytecode-interpreting software. That software is the
Dalvik virtual machine — a proxy, an errand boy, a go-between. The Dalvik
virtual machine serves as an interpreter between Dalvik’s run-anywhere
bytecode and your device’s own system. As it runs, the virtual machine walks
your device through the execution of bytecode instructions. It examines your
bytecode, bit by bit, and carries out the instructions described in the bytecode.
The virtual machine interprets bytecode for your ARM processor, your Intel
processor, your Texas Instruments chip, or whatever kind of processor
you’re using. That’s a good thing. It’s what makes Java code and Dalvik code
more portable than code written in any other language.

Java, Android, and Horticulture
“You don’t see the forest for the trees,” said my Uncle Harvey. To which my
Aunt Clara said “You don’t see the trees for the forest.” This argument went
on until they were both too tired to discuss the matter.

As an author, I like to present both the forest and the trees. The “forest”
is the broad overview, which helps you understand why you perform vari-
ous steps. The “trees” are the steps themselves, getting you from Point A to
Point B until you complete a task.

This chapter shows you the forest. The rest of this book shows you the trees.

	Part I: Getting Started with Java Programming for Android Developers
	Chapter 1: All about Java and Android
	The Consumer Perspective
	The Many Faces of Android
	The Developer Perspective
	From Development to Execution with Java
	Java, Android, and Horticulture

	About the Author

